

Common Pump Formula

	Product	
Viscosity	$v = \frac{\mu}{p}$	where: v = Kinematic viscosity (mm ² /s) $\mu =$ Absolute viscosity (mPas) p = fluid density (kg/m ³)
	$v = \frac{\mu}{SG}$	where: v = Kinematic viscosity (cSt) μ = Absolute viscosity (cP) SG = specific gravity
	Or $\mu = v x SG$	where: 1 poise = 100 cP 1 stoke = 100 cSt
Velocity	$V = \frac{Q}{A}$	where: V = fluid velocity (m/s) Q = capacity (m ³ /s) A = tube area (m ²)
	Or $V = \frac{Q \times 353.6}{D^2}$	where: V = fluid velocity (m/s) Q = capacity (m ³ /h) D = tube diameter (mm)
	Or $V = \frac{Q \ge 0.409}{D^2}$	where: V = fluid velocity (ft/s) Q = capacity (US gal/min) D = tube diameter (in)
Reynolds Number (ratio of inertia forces to viscous forces)	$Re = \frac{D \times V \times \rho}{\mu}$	where: D = tube diameter (m) V = fluid velocity (m/s) ρ = density (kg/m ³) μ = Absolute viscosity (Pas)
	Or Re = $\frac{D \times V \times \rho}{\mu}$	D = tube diameter (mm) V = fluid velocity (m/s) ρ = density (kg/m ³) μ = Absolute viscosity (cP)
Greensboro Division / Corporate Headquarters 301 Citation Court Greensboro, NC 27409 Phone: 336.393.0100 / 800.334.0231 Fax: 336.393.0140	Louisville Division 4400 Bishop Lane, Suite 112 Louisville, KY 40218 Phone: 502.459.7475 / 800.459.7475 Fax: 502.459.7633	Nashville Division 334 Free Hill Road, Suite B Hendersonville, TN 37075 5 Phone: 615.822.3030 / 855.749.4820 Fax: 615.822.3031
www.mgnewell.com	sales@mgnewell.com	espanol@mgnewell.com

MGNewell

We Make It Work Better.

	Or	
	$\operatorname{Re} = \frac{21230 \mathrm{x} \mathrm{Q}}{\mathrm{D} \mathrm{x} \mu}$	where: D = tube diameter (mm) Q = capacity (l/min) μ = Absolute viscosity (cP)
	Or	
	$Re = \frac{3162 \times Q}{D \times v}$	where: D = tube diameter (in) Q = capacity (US gal/min) v = Kinematic viscosity (cSt)
	Pressure/Head	
Pressure (total force per unit area exerted by a fluid)	$P = \frac{F}{A}$	where: F = Force A = Area
Static Pressure/Head (relationship between pressure and elevation)	$P = \rho x g x h$	where: P = Pressure head (Pa) ρ = density (kg/m ³) g = acceleration due to gravity (m/s ²) h = height of fluid (m)
	Or	
	$P = \frac{h \times SG}{10}$	where: P = Pressure head (bar) h = height of fluid (m) SG = specific gravity
	Ur	
	$P = \frac{h \times SG}{2.31}$	wnere: P = Pressure head (psi) h = height of fluid (ft) SG = specific gravity
Total Head	$H = H_t - (\pm H_s)$	where: H _t = total discharge head H _s = total suction head
Tatal Dischause Hand		
i otai Discharge Head	$H_t = h_t + h_{ft} + p_t$	h_t = static discharge head h_{ft} = pressure drop in discharge line p_t > 0 for pressure p_t < 0 for vacuum p_t = 0 for open tank
Total Suction Head		whore
	$H_s = h_s + h_{fs} + (\pm p_s)$	h_s = static suction head > 0 for flooded section < 0 for flooded section h_{fs} = pressure drop in suction line p_s > 0 for pressure p_s < 0 for vacuum p_s = 0 for open tank

sales@mgnewell.com

We Make It Work Better.

Friction Loss (Miller equation)	$Pf = \frac{f_D x L x \rho x V^2}{D x 2}$	where: Pf = friction loss (Pa) f_D = friction factor (Darcy) L = tube length (m) V = fluid viscosity (m/s) ρ = density (kg/m ³) D = tube diameter (m)
	Or	
	$Pf = \frac{5 x SG x f_D x L x V^2}{D}$	where: Pf = friction loss (bar) $f_D = friction factor (Darcy)$ L = tube length (m) V = fluid viscosity (m/s) SG = specific gravity D = tube diameter (mm)
	Or	
	$Pf = \frac{0.0823 \times SG \times f_D \times L \times V^2}{D}$	where: Pf = friction loss (psi) $f_D = friction factor (Darcy)$ L = tube length (ft) V = fluid viscosity (ft/s) SG = specific gravity D = tube diameter (in)
Darcy Friction Factor	$f_D = \frac{64}{Re}$	where: f _D = friction factor (Darcy) Re = Reynolds number
NPSHa (Net Positive Suction Head available)	NPSHa = Pa ± h _s – h _{fs} – Pvp (+h _s for flooded section) (-h _s for suction lift)	where: Pa = pressure absolute above fluid level (bar) h_s = static suction head (m) h_{fs} = pressure drop in suction line (m) Pvp = vapor pressure (bar a) Or Pa = pressure absolute above fluid level (psi) h_s = static suction head (ft) h_{fs} = pressure drop in suction line (ft) Pvp = vapor pressure (psia)